These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calmodulin-like protein from Entamoeba histolytica: solution structure and calcium-binding properties of a partially folded protein.
    Author: Rout AK, Padhan N, Barnwal RP, Bhattacharya A, Chary KV.
    Journal: Biochemistry; 2011 Jan 18; 50(2):181-93. PubMed ID: 21114322.
    Abstract:
    The mechanism of Ca(2+)-signaling in the protozoan parasite Entamoeba histolytica is yet to be understood as many of the key regulators are still to be identified. E. histolytica encodes a number of multi-EF-hand Ca(2+)-binding proteins (EhCaBPs). Functionally only one of these molecules, EhCaBP1, has been characterized to date. The calmodulin-like protein from E. histolytica (abbreviated as EhCaM or EhCaBP3) is a 17.23 kDa monomeric protein that shows maximum sequence identity with heterologous calmodulins (CaMs). Though CaM activity has been biochemically shown in E. histolytica, there are no reports on the presence of a typical CaM. In an attempt to understand the structural and functional similarity of EhCaM with CaM, we have determined the three-dimensional (3D) solution structure of EhCaM using NMR. The EhCaM has a well-folded N-terminal domain and an unstructured C-terminal counterpart. Further, it sequentially binds only two calcium ions, an unusual mode of Ca(2+)-binding among the known CaBPs, notably both in the N-terminal domain of EhCaM. Further, EhCaM is present in the nucleus in addition to the cytoplasm as detected by immunofluorescence staining, unlike other EhCaBPs that are detected only in the cytoplasm. Therefore, this protein is likely to have a different function. The presence of unusual and a diverse set of CaBPs in E. histolytica suggests a distinct Ca(2+)-signaling process in E. histolytica. The results reported here help in understanding the structure-function relationship of CaBPs including their Ca(2+)-binding properties.
    [Abstract] [Full Text] [Related] [New Search]