These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Superoxide-dependent reduction of free Fe(3+) and release of Fe(2+) from ferritin by the physiologically-occurring Cu(I)-glutathione complex. Author: Aliaga ME, Carrasco-Pozo C, López-Alarcón C, Olea-Azar C, Speisky H. Journal: Bioorg Med Chem; 2011 Jan 01; 19(1):534-41. PubMed ID: 21115254. Abstract: The intracellularly-occurring Cu(I)-glutathione complex (Cu(I)-[GSH](2)) has the ability to reduce molecular oxygen into superoxide radicals (O2·-). Based on such ability, we addressed the potential of this complex to generate the redox-active Fe(2+) species, during its interaction with free Fe(3+) and with ferritin-bound iron. Results show that: (i) the complex reduces free Fe(3+) through a reaction that totally depends on its O2·--generating capacity; (ii) during its interaction with ferritin, the complex reduces and subsequently releases iron through a largely (77%) SOD-inhibitable reaction; the remaining fraction is accounted for by a direct effect of GSH molecules contained within the complex. The O2·--dependent iron-releasing efficiency of the complex was half that of its iron-reducing efficiency; (iii) the ability of the complex to release ferritin-bound iron was increased, concentration-dependently, by the addition of GSH and totally prevented by SOD; (iv) in the presence of added H(2)O(2), the Fe(2+) ions generated through (i) or (ii) were able to catalyze the generation of hydroxyl radicals. Thus, the present study demonstrates the ability of the Cu(I)-[GSH](2) complex to generate the redox-active Fe(2+) species and suggest that by favouring the occurrence of superoxide-driven Fenton reactions, its pro-oxidant potential could be increased beyond its initial O2·--generating capacity.[Abstract] [Full Text] [Related] [New Search]