These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modeling contaminants in AP-MS/MS experiments.
    Author: Lavallée-Adam M, Cloutier P, Coulombe B, Blanchette M.
    Journal: J Proteome Res; 2011 Feb 04; 10(2):886-95. PubMed ID: 21117706.
    Abstract:
    Identification of protein-protein interactions (PPI) by affinity purification (AP) coupled with tandem mass spectrometry (AP-MS/MS) produces large data sets with high rates of false positives. This is in part because of contamination at the AP level (due to gel contamination, nonspecific binding to the TAP columns in the context of tandem affinity purification, insufficient purification, etc.). In this paper, we introduce a Bayesian approach to identify false-positive PPIs involving contaminants in AP-MS/MS experiments. Specifically, we propose a confidence assessment algorithm (called Decontaminator) that builds a model of contaminants using a small number of representative control experiments. It then uses this model to determine whether the Mascot score of a putative prey is significantly larger than what was observed in control experiments and assigns it a p-value and a false discovery rate. We show that our method identifies contaminants better than previously used approaches and results in a set of PPIs with a larger overlap with databases of known PPIs. Our approach will thus allow improved accuracy in PPI identification while reducing the number of control experiments required.
    [Abstract] [Full Text] [Related] [New Search]