These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian.
    Author: Treeby BE, Cox BT.
    Journal: J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722.
    Abstract:
    The efficient simulation of wave propagation through lossy media in which the absorption follows a frequency power law has many important applications in biomedical ultrasonics. Previous wave equations which use time-domain fractional operators require the storage of the complete pressure field at previous time steps (such operators are convolution based). This makes them unsuitable for many three-dimensional problems of interest. Here, a wave equation that utilizes two lossy derivative operators based on the fractional Laplacian is derived. These operators account separately for the required power law absorption and dispersion and can be efficiently incorporated into Fourier based pseudospectral and k-space methods without the increase in memory required by their time-domain fractional counterparts. A framework for encoding the developed wave equation using three coupled first-order constitutive equations is discussed, and the model is demonstrated through several one-, two-, and three-dimensional simulations.
    [Abstract] [Full Text] [Related] [New Search]