These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multi-finger pressing synergies change with the level of extra degrees of freedom. Author: Karol S, Kim YS, Huang J, Kim YH, Koh K, Yoon BC, Shim JK. Journal: Exp Brain Res; 2011 Feb; 208(3):359-67. PubMed ID: 21120460. Abstract: The purpose of this study was to test the principle of motor abundance, which has been hypothesized as the principle by which the central nervous system controls the excessive degrees of freedom of the human movements, in contrast to the traditional negative view of motor redundancy. This study investigated the changes in force stabilizing and moment stabilizing synergies for multi-finger pressing tasks involving different number of fingers. Twelve healthy subjects produced a constant pressing force while watching visual feedback of the total pressing force for the fingers involved in each task. Based on the principle of motor abundance, it was hypothesized that the multi-finger synergies for the total force stabilizing synergy and the total moment stabilizing synergy would be greater as the number of task finger increases. Force stabilizing and moment stabilizing synergies were quantified using the framework of the uncontrolled manifold analysis. It was found that strong force stabilizing synergies existed for all the finger combinations. The index of force stabilizing synergies was greater when the task involved more number of fingers. The index of moment stabilizing synergies was negative for the two-finger combination, representing moment destabilizing synergies. However, the index of moment stabilizing synergies was positive for three-finger and four-finger combinations, representing strong moment stabilizing synergies for these finger combinations. We interpret the findings as an evidence for the principle of abundance for stabilization of both, total force as well as total moment.[Abstract] [Full Text] [Related] [New Search]