These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A new method for the determination of carbonyl compounds in wines by headspace solid-phase microextraction coupled to gas chromatography-ion trap mass spectrometry.
    Author: Pérez Olivero SJ, Pérez Trujillo JP.
    Journal: J Agric Food Chem; 2010 Dec 22; 58(24):12976-85. PubMed ID: 21121610.
    Abstract:
    A new analytical method for the determination of 18 carbonyl compounds [2,3-pentadione, hexanal, (E)-2-hexen-1-al, octanal, acetoin, (E)-2-octenal, furfural, decanal, (E)-2-nonenal, benzaldehyde, 5-methylfurfural, (E,E)-2-cis-6-nonadienal, β-damascenone, phenylacetaldehyde, acetophenone, (E,E)-2,4-decadienal, benzophenone, and vanillin] in wines using automated headspace solid-phase microextraction (HS/SPME) coupled to gas chromatography-ion trap mass spectrometry (GC-ITMS) was developed. Five fibers with different polarities were tested, and a study of the influence of various factors such as time and extraction temperature, desorption time and temperature, pH, and ionic strength and content in tannins, anthocyans, sucrose, SO(2), and alcoholic degree was conducted. These factors were optimized using a synthetic wine doped with the different analytes. The proposed method affords wide ranges of linearity, good linearity (r(2) > 0.998), values of repeatability and reproducibility lower than 5.5% of RSD, and detection limits ranging from 0.62 μg/L for β-damascenone to 129.2 μg/L for acetoin. Therefore, the optimized method was applied to the quantitative analysis of the aforementioned analytes in real samples of wines.
    [Abstract] [Full Text] [Related] [New Search]