These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Guinea pig ileum motility stimulation elicited by N-formyl-Met-Leu-Phe (fMLF) involves neurotransmitters and prostanoids. Author: Colucci M, Mastriota M, Maione F, Di Giannuario A, Mascolo N, Palmery M, Severini C, Perretti M, Pieretti S. Journal: Peptides; 2011 Feb; 32(2):266-71. PubMed ID: 21126546. Abstract: In guinea-pig ileum (GPI), the chemotactic peptide N-formyl-Met-Leu-Phe-OH (fMLF) possesses spasmogenic properties through the activation of formyl peptide receptors (FPRs). Despite this, the mediators involved remain to be elucidated. fMLF (1nM-1μM) induced a dose-dependent contraction of GPI (EC(50)=24nM), that is blocked by pre-treatment with the FPRs antagonist Boc(2). The pre-treatment with tetrodotoxin (TTX) atropine or with SR140333 reduced the fMLF-induced contraction, whereas with hexamethonium, MEN10627, SB222200, mepyramine, cimetidine, thioperamide or methysergide did not produce any effect. With DuP697 pre-treatment, but not with piroxicam, reduced the fMLF-induced contraction. After stimulation with 24nM fMLF, a strong increase in the PGE(2) levels was observed. Finally, the concomitant blocking of the NK(1) receptor, the muscarinic receptors and COX-2 abolished the GPI contractions induced by fMLF. fMLF induced a concentration-dependent contraction of guinea-pig jejunum (EC(50)=11nM), proximal colon (EC(50)=3.5nM) and distal colon (EC(50)=2.2nM), with a time-course similar to that observed in GPI. In these preparations as well, the co-administration of atropine, SR140333 and DuP697 abolished the contractions induced by fMLF. Intraperitoneal injection of fMLF (0.1 or 1μmol/kg) enhanced the gastrointestinal motility in mice, abolished by the co-administration of atropine, SR140333 and DuP697. In conclusion, we showed that fMLF exerts spasmogenic actions on guinea-pig intestine both in vitro and in vivo through the release of acetylcholine and substance P from myenteric motorneurons and through prostanoids, probably from the inflammatory cells of the enteric immune system.[Abstract] [Full Text] [Related] [New Search]