These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of in vivo genotoxic potential of fenofibrate in rats subjected to two-week repeated oral administration. Author: Tawfeeq MM, Suzuki T, Shimamoto K, Hayashi H, Shibutani M, Mitsumori K. Journal: Arch Toxicol; 2011 Aug; 85(8):1003-11. PubMed ID: 21127841. Abstract: Fenofibrate (FF), a peroxisome proliferator-activated receptor-alpha agonist, has been used as one of the hypolipidemic drugs in man and induces oxidative stress and promotes hepatocarcinogenesis in the liver of rodents. This chemical belongs to a class of non-genotoxic carcinogens, but DNA damage secondary to oxidative stress resulting from reactive oxygen species (ROS) generation is suspected in rodents given this chemical. To examine whether FF has genotoxic potential, partially hepatectomized F344 male rats were treated orally with 0, 1,000 or 2,000 mg/kg of FF for 2 weeks, followed by diet containing 0.15% 2 acetyl aminofluorene (2 AAF) for enhancement the tumor-promoting effect for 10 days and a single oral dose of carbon tetrachloride (CCl4) as the first experiment (liver initiation assay). As the second experiment, the in vivo liver comet assay was performed in hepatectomized rats, and the expression of some DNA repair genes was examined. In the liver initiation assay, the number and area of glutathione S-transferase placental form (GST-P)-positive single cells and foci did not increase in the FF treated groups. In the comet assay, positive results were obtained after 3 h of the last treatment of FF, and the expression of some DNA repair genes such as Apex1, Ogg1 and Mlh1 were upregulated in rats given the high dose of FF at 3 h after the treatment but not in 24 h after the treatment. The results of the present study suggest that FF causes some DNA damage in livers of rats, but is not a strong genotoxic substance leading to a DNA mutation since such DNA damage was repaired by the increased activity of some DNA repair genes.[Abstract] [Full Text] [Related] [New Search]