These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Behavioral responses to immune-system activation in an anuran (the cane toad, Bufo marinus): field and laboratory studies. Author: Llewellyn D, Brown GP, Thompson MB, Shine R. Journal: Physiol Biochem Zool; 2011; 84(1):77-86. PubMed ID: 21128787. Abstract: The challenges posed by parasites and pathogens evoke behavioral as well as physiological responses. Such behavioral responses are poorly understood for most ectothermic species, including anuran amphibians. We quantified effects of simulated infection (via injection of bacterial lipopolysaccharide [LPS]) on feeding, activity, and thermoregulation of cane toads Bufo marinus within their invasive range in tropical Australia. LPS injection reduced feeding rates in laboratory trials. For toads in outdoor enclosures, LPS injection reduced activity and shifted body temperature profiles. Although previous research has attributed such thermal shifts to behavioral fever (elevated body temperatures may help fight infection), our laboratory studies suggest instead that LPS-injected toads stopped moving. In a thermal gradient, LPS-injected toads thus stayed close to whichever end of the gradient (hot or cold) they were first introduced; the introduction site (rather than behavioral thermoregulation) thus determined body temperature regimes. Shifts in thermal profiles of LPS-injected toads in outdoor enclosures also were a secondary consequence of inactivity. Thus, the primary behavioral effects of an immune response in cane toads are reduced rates of activity and feeding. Thermoregulatory modifications also occur but only as a secondary consequence of inactivity.[Abstract] [Full Text] [Related] [New Search]