These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Particle engineering of materials for oral inhalation by dry powder inhalers. II-Sodium cromoglicate. Author: Nolan LM, Li J, Tajber L, Corrigan OI, Healy AM. Journal: Int J Pharm; 2011 Feb 28; 405(1-2):36-46. PubMed ID: 21129460. Abstract: Sodium cromoglicate is an antiasthmatic and antiallergenic drug used in inhalation therapy and commonly administered by a dry powder inhaler. In the present study we sought to examine the feasibility of producing nanoporous microparticles (NPMPs) of this hydrophilic material by adaptation of a spray drying process previously applied to hydrophobic drugs, and to examine the physicochemical and in vitro deposition properties of the spray dried particles in comparison to a commercial product. The storage stability of successfully prepared NPMPs was assessed under a number of conditions (4°C with dessicant, 25°C at 60% relative humidity and 25°C with dessicant). Spray dried sodium cromoglicate was amorphous in nature. NPMPs of sodium cromoglicate displayed superior aerodynamic properties resulting in improved in vitro drug deposition, as assessed by Andersen Cascade Impactor and twin impinger studies, in comparison to the commercial product, Intal. Deposition studies indicated that porosity and sphericity were important factors in improving deposition properties. The optimum solvent system for NPMP production was water:methanol:n-butyl acetate, as spherical NPMPs spray dried from this solvent system had a higher respirable fraction than non-spherical NPMPs of sodium cromoglicate (spray dried from methanol:n-butyl acetate), non-porous sodium cromoglicate (spray dried from water) and micronised sodium cromoglicate (Intal). While particle morphology was altered by storage at high humidity (60% RH) and in vitro deposition performance deteriorated, it was possible to maintain NPMP morphology and aerosolisation performance by storing the powder with dessicant.[Abstract] [Full Text] [Related] [New Search]