These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Performance of electron acceptors in catholyte of a two-chambered microbial fuel cell using anion exchange membrane. Author: Pandit S, Sengupta A, Kale S, Das D. Journal: Bioresour Technol; 2011 Feb; 102(3):2736-44. PubMed ID: 21129959. Abstract: The performance of the cathodic electron acceptors (CEA) used in the two-chambered microbial fuel cell (MFC) was in the following order: potassium permanganate (1.11V; 116.2 mW/m(2))>potassium persulfate (1.10 V; 101.7 mW/m(2))>potassium dichromate, K(2)Cr(2)O(7) (0.76 V; 45.9 mW/m(2))>potassium ferricyanide (0.78 V; 40.6 mW/m(2)). Different operational parameters were considered to find out the performance of the MFC like initial pH in aqueous solutions, concentrations of the electron acceptors, phosphate buffer and aeration. Potassium persulfate was found to be more suitable out of the four electron acceptors which had a higher open circuit potential (OCP) but sustained the voltage for a much longer period than permanganate. Chemical oxygen demand (COD) reduction of 59% was achieved using 10mM persulfate in a batch process. RALEX™ AEM-PES, an anion exchange membrane (AEM), performed better in terms of power density and OCP in comparison to Nafion®117 Cation Exchange Membrane (CEM).[Abstract] [Full Text] [Related] [New Search]