These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quantum mechanics/molecular mechanics strategies for docking pose refinement: distinguishing between binders and decoys in cytochrome C peroxidase.
    Author: Burger SK, Thompson DC, Ayers PW.
    Journal: J Chem Inf Model; 2011 Jan 24; 51(1):93-101. PubMed ID: 21133348.
    Abstract:
    We investigate the effect of systematically applying molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) to docked poses in an attempt to improve the correspondence between theoretical prediction and experimental observation. The proposed scheme involves running a short time scale MD simulation on a docked ligand pose (and any known structurally important crystal structure waters in the active site), followed by QM/MM minimization. Both of these steps are relatively fast for moderately sized ligands; longer time scale MD involving the protein is not found to improve the results. The final binding energy is given in terms of the QM/MM total energy, a van der Waals correction, and a term to account for desolvation effects. This methodology is first tested with a trypsin inhibitor, for which we establish the importance of running MD before reoptimizing with QM/MM. The method is then applied to cytochrome c peroxidase using a set of binders and decoys. In this example, the proposed methodology affords much better discrimination between binders and decoys than the traditional docking approach used. For both systems presented, application of this protocol results in a significantly better energetic ranking and a smaller root mean squared deviation from known crystallographic ligand poses. This work highlights the importance of including polarization effects through QM/MM and of sampling with MD to refine a set of initial docked poses.
    [Abstract] [Full Text] [Related] [New Search]