These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recovery of non-specific cholinesterase activity in sensory corpuscles of mouse toe skin after irreversible inhibition of this enzyme and cold injury.
    Author: Dubový P, Svízenská I.
    Journal: Acta Histochem; 1990; 88(1):77-91. PubMed ID: 2113344.
    Abstract:
    Mouse digital corpuscles, located in the dermal papillae of toe pad skin, consist of the sensory axon terminals enveloped by the cytoplasmic processes of Schwann-derived cells forming the so-called inner core. The inner core cells are capable to synthetize nCHE molecules which are released into the interlamellar spaces filled by the basal lamina, collagenous microfibrils, and amorphous matrix. In the present study, the histochemical detection of the nCHE activity was investigated in the sensory corpuscles after sciatic and saphenous nerve transections and subsequent application of irreversible nCHE inhibitor (iso-OMPA) or cryo-treatment of toe pad skin. The recovery of the nCHE reaction product in both intact and denervated corpuscles revealed the resynthesis of the nCHE molecules by the inner core cells without assistance of sensory terminals, as well. The cellular constituents of corpuscles were degraded while extracellular matrix appeared to be undamaged after freezing injury. The molecules of nCHE attached to the extracellular matrix components disappeared in coincidence with the disintegration of Schwann-derived cells. After about 5 d of survival, the Schwann cells exhibiting the nCHE reactivity migrated through the basal lamina tubes as guidance of regrowing axons or alone. After 7 d from the treatment, immature Schwann cells marked by the nCHE reaction product occupied the scaffolds of old damaged sensory corpuscles. During further days of surviving, the Schwann cells entering the extracellular matrix of degraded corpuscles were differentiated to the inner core cells. The re-differentiation of the Schwann cells into the inner core cells was observed not only in the presence but also in the absence of sensory terminals. These findings suggest certain trophic independence of inner core cells upon sensory terminals in the sensory corpuscles of adult animals.
    [Abstract] [Full Text] [Related] [New Search]