These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel T-RFLP method to investigate six main groups of 2,4-diacetylphloroglucinol-producing pseudomonads in environmental samples.
    Author: von Felten A, Meyer JB, Défago G, Maurhofer M.
    Journal: J Microbiol Methods; 2011 Mar; 84(3):379-87. PubMed ID: 21144868.
    Abstract:
    Strains of fluorescent pseudomonads producing 2,4-diacetylphloroglucinol (DAPG) are involved in the protection of plant roots against soil-borne plant pathogens. Recently, a multilocus sequence analysis of a world wide collection of DAPG-producers led to the identification of six main groups (A-F). In this study a T-RFLP method based on the phlD gene was developed to efficiently identify the members of these six groups in environmental samples. A combination of six restriction enzymes was identified which leads to group specific terminal fragments (T-RF). The detection limit of the phlD-T-RFLP method was determined for the two P. fluorescens strains F113 (group B) and CHA0 (group F) in rhizosphere samples and was found to be 5×10(3)CFU/g and 5×10(4)CFU/g respectively. PhlD-T-RFLP and phlD-DGGE analysis of wheat and maize root samples from greenhouse and field revealed similarly the presence of multilocus groups A, B and D. However, they were more frequently detected with phlD-T-RFLP. Additionally, groups C and F were detected in greenhouse samples but only by phlD-T-RFLP and not by phlD-DGGE. In conclusion, the new phlD-T-RFLP method proved to be a fast and reliable method to detect strains of the six main groups of DAPG-producers in environmental samples with an improved detection limit compared to phlD-DGGE.
    [Abstract] [Full Text] [Related] [New Search]