These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protective effect of dietary n-3 polyunsaturated fatty acids on myocardial resistance to ischemia-reperfusion injury in rats.
    Author: Zeghichi-Hamri S, de Lorgeril M, Salen P, Chibane M, de Leiris J, Boucher F, Laporte F.
    Journal: Nutr Res; 2010 Dec; 30(12):849-57. PubMed ID: 21147368.
    Abstract:
    Dietary n-3 polyunsaturated fatty acids (PUFA) reduce coronary heart disease (CHD) complications, such as chronic arrhythmia and sudden cardiac death. Improved myocardial resistance to ischemia-reperfusion injury results in smaller myocardial infarction, which is a major factor in the occurrence of CHD complications. We hypothesized that a specific dietary fatty acid profile (low in saturated and n-6 PUFA but high in plant and marine n-3 PUFA) may improve myocardial resistance to ischemia-reperfusion injury and reduce infarct size. To test this assumption, we used a well-defined rat model of myocardial infarction. Based on our results, in comparison to a diet that is high in either saturated or n-6 PUFA but poor in plant and marine n-3 PUFA, a diet that is low in saturated fats and n-6 PUFA but rich in plant and marine n-3 PUFA results in smaller myocardial infarct size (P < .01). The effects of the 3 diets were also examined by analyzing the fatty acid composition of plasma, erythrocyte cell membranes, and the phospholipids of myocardial mitochondria. The results show a great accumulation of n-3 PUFA and a parallel decrease in arachidonic acid, the main n-6 PUFA, in plasma, cell membranes, and cardiac mitochondria (P < .0001). We conclude that improved myocardial resistance to ischemia-reperfusion may be one of the critical factors explaining the protective effects of dietary n-3 PUFA against CHD complications in humans. In addition to increasing n-3 PUFA intake, an optimal dietary pattern aimed at reducing cardiovascular mortality should include a reduction of the intake of both saturated and n-6 PUFA.
    [Abstract] [Full Text] [Related] [New Search]