These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Generation and characterization of recombinant pandemic influenza A(H1N1) viruses resistant to neuraminidase inhibitors.
    Author: Pizzorno A, Bouhy X, Abed Y, Boivin G.
    Journal: J Infect Dis; 2011 Jan 01; 203(1):25-31. PubMed ID: 21148493.
    Abstract:
    BACKGROUND: Neuraminidase inhibitors (NAIs) play a key role in the management of influenza epidemics and pandemics. Given the novel pandemic influenza A(H1N1) (pH1N1) virus and the restricted number of approved anti-influenza drugs, evaluation of potential drug-resistant variants is of high priority. METHODS: Recombinant pH1N1 viruses were generated by reverse genetics, expressing either the wild-type or any of 9 mutant neuraminidase (NA) proteins (N2 numbering: E119G, E119V, D198G, I222V, H274Y, N294S, S334N, I222V-H274Y, and H274Y-S334N). We evaluated these recombinant viruses for their resistance phenotype to 4 NAIs (oseltamivir, zanamivir, peramivir, and A-315675), NA enzymatic activity, and replicative capacity. RESULTS: The E119G and E119V mutations conferred a multidrug resistance phenotype to many NAIs but severely compromised viral fitness. The oseltamivir- and peramivir-resistance phenotype was confirmed for the H274Y and N294S mutants, although both viruses remained susceptible to zanamivir. Remarkably, the I222V mutation had a synergistic effect on the oseltamivir- and peramivir-resistance phenotype of H274Y and compensated for reduced viral fitness, raising concerns about the potential emergence and dissemination of this double-mutant virus. CONCLUSIONS: This study highlights the importance of continuous monitoring of antiviral drug resistance in clinical samples as well as the need to develop new agents and combination strategies.
    [Abstract] [Full Text] [Related] [New Search]