These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vibrational relaxation and intersystem crossing of binuclear metal complexes in solution.
    Author: van der Veen RM, Cannizzo A, van Mourik F, Vlček A, Chergui M.
    Journal: J Am Chem Soc; 2011 Jan 19; 133(2):305-15. PubMed ID: 21162574.
    Abstract:
    The ultrafast vibrational-electronic relaxation upon excitation into the singlet (1)A(2u) (dσ*→pσ) excited state of the d(8)-d(8) binuclear complex [Pt(2)(P(2)O(5)H(2))(4)](4-) has been investigated in different solvents by femtosecond polychromatic fluorescence up-conversion and femtosecond broadband transient absorption (TA) spectroscopy. Both sets of data exhibit clear signatures of vibrational relaxation and wave packet oscillations of the Pt-Pt stretch vibration in the (1)A(2u) state with a period of 224 fs, that decay on a 1-2 ps time scale, and of intersystem crossing (ISC) into the (3)A(2u) state. The vibrational relaxation and ISC times exhibit a pronounced solvent dependence. We also extract from the TA measurements the spectral distribution of the wave packet at a given delay time, which reflects the distribution of Pt-Pt bond distances as a function of time, i.e., the structural dynamics of the system. We clearly establish the vibrational relaxation and coherence decay processes, and we demonstrate that PtPOP represents a clear example of a harmonic oscillator that does not comply with the optical Bloch description due to very efficient coherence transfer between vibronic levels. We conclude that a direct Pt-solvent energy dissipation channel accounts for the vibrational cooling in the singlet state. ISC from the (1)A(2u) to the (3)A(2u) state is induced by spin-vibronic coupling with a higher-lying triplet state and/or (transient) symmetry breaking in the (1)A(2u) excited state. The particular structure, energetics, and symmetry of the molecule play a decisive role in determining the relatively slow rate of ISC, despite the large spin-orbit coupling strength of the Pt atoms.
    [Abstract] [Full Text] [Related] [New Search]