These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence that the exoH gene of Sinorhizobium meliloti does not appear to influence symbiotic effectiveness with Medicago truncatula 'Jemalong A17'. Author: Zribi K, Mhadhbi H, Badri Y, Aouani ME, van Berkum P. Journal: Can J Microbiol; 2010 Dec; 56(12):996-1002. PubMed ID: 21164569. Abstract: The purpose of this study was to identify strains of Sinorhizobium meliloti that formed either an effective or completely ineffective symbiosis with Medicago truncatula L. 'Jemalong A17' and, subsequently, to determine whether differences existed between their exoH genes. Sinorhizobium meliloti TII7 and A5 formed an effective and ineffective symbiosis with M. truncatula 'Jemalong A17', respectively. Using a multilocus sequence typing method, both strains were shown to have chromosomes identical with S. meliloti Rm1021 and RCR2011. The 2260-bp segments of DNA stretching from the 3' end of exoI through open reading frames of hypothetical proteins SM_b20952 and SM_b20953 through exoH into the 5' end of exoK in strains TII7 and Rm1021 differed by a single nucleotide at base 127 of the hypothetical protein SM_b20953. However, the derived amino acid sequences of the exoH genes of effective TII7, ineffective A5, and strain Rm1021 were shown to be identical with each other. Therefore, it would seem unlikely that the gene product of exoH is directly involved with the low efficiency of a symbiosis of strain Rm1021 with M. truncatula 'Jemalong A17'. Complementation or complete genome sequence analyses involving strains TII7 and A5 might be useful approaches to investigate the molecular bases for the differential symbiotic response with M. truncatula 'Jemalong A17'.[Abstract] [Full Text] [Related] [New Search]