These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of CLOCK on cytotoxicity induced by diethylnitrosamine in mouse primary hepatocytes.
    Author: Matsunaga N, Kohno Y, Kakimoto K, Hayashi A, Koyanagi S, Ohdo S.
    Journal: Toxicology; 2011 Feb 27; 280(3):144-51. PubMed ID: 21167249.
    Abstract:
    The Clock gene is a core clock factor that plays an essential role in generating circadian rhythms. In the present study, it was investigated whether the Clock gene affects the response to diethylnitrosamine (DEN)-induced cytotoxicity using mouse primary hepatocytes. DEN-induced cytotoxicity, after 24h exposure, was caused by apoptosis in hepatocytes isolated from wild-type mouse. On the other hand, Clock mutant mouse (Clk/Clk) hepatocytes showed resistance to apoptosis. Because apoptosis is an important pathway for suppressing carcinogenesis after genomic DNA damage, the mechanisms that underlie resistance to DEN-induced apoptosis were examined in Clk/Clk mouse hepatocytes. The mRNA levels of metabolic enzymes bioactivating DEN and apoptosis-inducing factors before DEN exposure were lower in Clk/Clk cells than in wild-type cells. The accumulation of p53 and Ser15 phosphorylated p53 after 8h DEN exposure was seen in wild-type cells but not in Clk/Clk cells. Caspase-3/7 activity was elevated during 24h DEN exposure in wild-type cells but not in Clk/Clk cells. In addition, resistance to DEN-induced apoptosis in Clk/Clk cells affected the cell viability. These studies suggested that the lower expression levels of metabolic enzymes bioactivating DEN and apoptosis inducing factors affected the resistance to DEN-induced apoptosis in Clk/Clk cells, and the Clock gene plays an important role in cytotoxicity induced by DEN.
    [Abstract] [Full Text] [Related] [New Search]