These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS).
    Author: Wiogo HT, Lim M, Bulmus V, Yun J, Amal R.
    Journal: Langmuir; 2011 Jan 18; 27(2):843-50. PubMed ID: 21171579.
    Abstract:
    A facile method of stabilizing magnetic iron oxide nanoparticles (MNPs) in biological media (RPMI-1640) via surface modification with fetal bovine serum (FBS) is presented herein. Dynamic light scattering (DLS) shows that the size of the MNP aggregates can be maintained at 190 ± 2 nm for up to 16 h in an RPMI 1640 culture medium containing ≥4 vol % FBS. Under transmission electron microscopy (TEM), a layer of protein coating is observed to cover the MNP surface following treatment with FBS. The adsorption of proteins is further confirmed by X-ray photoelectron spectroscopy (XPS). Gel electrophoresis and LC-MS/MS studies reveal that complement factor H, antithrombin, complement factor I, α-1-antiproteinase, and apolipoprotein E are the proteins most strongly attached to the surface of an MNP. These surface-adsorbed proteins serve as a linker that aids the adsorption of other serum proteins, such as albumin, which otherwise adsorb poorly onto MNPs. The size stability of FBS-treated MNPs in biological media is attributed to the secondary adsorbed proteins, and the size stability in biological media can be maintained only when both the surface-adsorbed proteins and the secondary adsorbed proteins are present on the particle's surface.
    [Abstract] [Full Text] [Related] [New Search]