These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel.
    Author: Yu J, Ma T, Liu S.
    Journal: Phys Chem Chem Phys; 2011 Feb 28; 13(8):3491-501. PubMed ID: 21173966.
    Abstract:
    Mesoporous multiwalled carbon nanotubes/titanium dioxide (CNTs/TiO(2)) nanocomposites with low loading amounts (0-0.5 wt%) of CNTs embedded inside mesoporous TiO(2) aggregates has been prepared by a simple one-pot hydrothermal method using titanium sulfate as titanium source. The as-prepared CNTs/TiO(2) samples are carefully characterized, analyzed and discussed. In contrast to previous reports with high CNT loading, our results indicate that a low CNT loading slightly influences the textural properties (including crystallite size, degree of crystallinity, specific surface areas, and pore volume etc.) and UV-light absorption of the mesoporous TiO(2) aggregates. The SEM and TEM results demonstrate that the CNTs are mostly embedded in the mesoporous TiO(2) aggregates. Moreover, chemical bonds are formed at the interface between CNTs and TiO(2), which is confirmed by the Raman, IR and XPS analyses. Significantly, we point out that PL analysis in terms of intensity of PL signals seems to not be a reliable way to monitor the recombination rate in the CNTs/TiO(2) composite, due to the quenching effect of CNTs. Instead, the analysis of transient photocurrent responses is introduced, which definitely reflects CNTs as fast electron transfer channels in chemically-bonded CNTs/TiO(2) composites with low CNT loading. Notably, the positive synergy effects of CNTs and TiO(2) depend on both the CNT loading amount and the state of interfacial contacts. In our study, only these chemically bonded CNTs/TiO(2) nanocomposites with appropriate loading amounts (<0.1 wt%) favor the separation of photogenerated electron-hole pairs and decrease their recombination rate and thus display significantly enhanced photocatalytic activity for degrading acetone in air under UV irradiation, as compared with pristine TiO(2) counterparts and commercial P25 photocatalyst. In contrast, a high CNT loading (>0.1 wt%) results in a decrease in photocatalytic activity; a simple mechanical mixing of CNTs and TiO(2) without forming chemical bonds at the interface also results in inferior photocatalytic performance.
    [Abstract] [Full Text] [Related] [New Search]