These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interaction between metal and graphene: dependence on the layer number of graphene. Author: Lee J, Novoselov KS, Shin HS. Journal: ACS Nano; 2011 Jan 25; 5(1):608-12. PubMed ID: 21174405. Abstract: The interaction between graphene and metal was investigated by studying the G band splitting in surface-enhanced Raman scattering (SERS) spectra of single-, bi-, and trilayer graphene. The Ag deposition on graphene induced large enhancement of the Raman signal of graphene, indicating SERS of graphene. In particular, the G band was split into two distinct peaks in the SERS spectrum of graphene. The extent of the G band splitting was 13.0 cm(-1) for single-layer, 9.6 cm(-1) for bilayer, and 9.4 cm(-1) for trilayer graphene, whereas the G band in the SERS spectrum of a thick multilayer was not split. The average SERS enhancement factor of the G band was 24 for single-layer, 15 for bilayer, and 10 for trilayer graphene. These results indicate that there is a correlation between SERS enhancement factor and the extent of the G band splitting, and the strongest interaction occurs between Ag and single-layer graphene. Furthermore, the Ag deposition on graphene can induce doping of graphene. The intensity ratio of 2D and G bands (I(2D)/I(G)) decreased after Ag deposition on graphene, indicating doping of graphene. From changes in positions of G and 2D bands after the metal deposition on graphene, Ag deposition induced n-doping of graphene, whereas Au deposition induced p-doping.[Abstract] [Full Text] [Related] [New Search]