These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Impact of zinc fingers and homeoboxes 3 on the regulation of mesenchymal stem cell osteogenic differentiation. Author: Suehiro F, Nishimura M, Kawamoto T, Kanawa M, Yoshizawa Y, Murata H, Kato Y. Journal: Stem Cells Dev; 2011 Sep; 20(9):1539-47. PubMed ID: 21174497. Abstract: We propose zinc fingers and homeoboxes 3 (ZHX3) as new osteogenic markers for mesenchymal stem cells (MSC). ZHX3 mRNA expression was upregulated within 1-6 h after incubation of MSCs in the osteogenic induction medium, and reached maximum levels after 24 h of incubation. Two to 4 days later, ZHX3 mRNA levels had decreased sharply. Maximal mRNA levels were 3- to 5-fold higher than those in the undifferentiated state. In contrast, Runt-related transcription factor2 (RUNX2) mRNA expression was downregulated at 2-4 h after incubation, and levels were only enhanced 1.4-fold after 12 and 24 h of incubation. Further, Osterix mRNA levels increased only 1.6-fold after 4 and 24 h of incubation. Thus, ZHX3 expression may be a better marker of MSC osteogenic differentiation than RUNX2 or Osterix expression at the initial stage of differentiation. Knockdown of ZHX3 using 2 distinct small interfering RNA (siRNA) oligonucleotides had little effect on cell morphology or on MSC proliferation, regardless of the differentiation state of the cells. However, ZHX3 siRNAs suppressed Osterix, but not RUNX2 mRNA expression, within 1 h of osteogenic differentiation, and this suppression was sustained for at least 24 h. The 2 ZHX3 siRNAs also suppressed alkaline phosphatase induction and matrix mineralization (assessed using alizarin red staining), and, further, suppressed the calcium content of the cultures at a later stage of differentiation (days 6-21). The effects of ZHX3 siRNAs on the osteogenic differentiation were comparable to those of RUNX2 and Osterix siRNAs. These findings suggest that ZHX3 is involved in the switch from the undifferentiated state of MSC to an osteogenic program, and that ZHX3 may be useful as an early osteogenic differentiation marker.[Abstract] [Full Text] [Related] [New Search]