These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of a region of UDP-galactose:N-acetylglucosamine beta 4-galactosyltransferase involved in UDP-galactose binding by differential labeling. Author: Yadav S, Brew K. Journal: J Biol Chem; 1990 Aug 25; 265(24):14163-9. PubMed ID: 2117606. Abstract: The location of regions in the primary structure of UDP-galactose:N-acetylglucosamine beta 4-galactosyl-transferase (GT) that are involved in binding UDP-galactose has been investigated by differential chemical modification with two different reagents in the presence and absence of UDP-galactose. Treatment with periodate-cleaved UDP and NaCNBH3 resulted in a loss of 80% of GT activity, which was largely prevented by UDP-galactose. Stoichiometry of labeling and peptide maps of the modified enzyme samples indicated partial labeling at many sites. A major site of reaction in the absence of UDP-galactose that was essentially unmodified in its presence was found to correspond to Lys341 in the cDNA sequence of GT. As a second approach, the reactivities of the amino groups of GT were compared in the presence and absence of saturating levels of UDP-galactose by trace acetylation with [3H]acetic anhydride. UDP-galactose binding was found to perturb the reactivities of a number of lysines in the C-terminal region of GT, the most pronounced effect being a reduction in the reactivity of Lys351. The two procedures thus identified a region between residues 341 and 351 as being associated with UDP-galactose binding. This region overlaps a small section in the sequence of GT that was previously noted to be similar to part of bovine alpha-1,3-galactosyltransferase (Joziasse, D. H., Shaper, J. H., Van den Eijnden, D. H., Van Tunen, A. J., and Shaper, N. L. (1989) J. Biol. Chem. 264, 14290-14297). Sequence comparisons indicate that extended regions at the C terminus of each enzyme encompassing this area may represent homologous UDP-galactose-binding domains.[Abstract] [Full Text] [Related] [New Search]