These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interpenetrating polymer network (IPN) nanogels based on gelatin and poly(acrylic acid) by inverse miniemulsion technique: synthesis and characterization. Author: Koul V, Mohamed R, Kuckling D, Adler HJ, Choudhary V. Journal: Colloids Surf B Biointerfaces; 2011 Apr 01; 83(2):204-13. PubMed ID: 21185698. Abstract: Novel interpenetrating polymer network (IPN) nanogels composed of poly(acrylic acid) and gelatin were synthesised by one pot inverse miniemulsion (IME) technique. This is based on the concept of nanoreactor and cross-checked from template polymerization technique. Acrylic acid (AA) monomer stabilized around the gelatin macromolecules in each droplet was polymerized using ammonium persulfate (APS) and tetramethyl ethylene diamine (TEMED) in 1:5 molar ratio and cross-linked with N,N-methylene bisacrylamide (BIS) to form semi-IPN (sIPN) nanogels, which were sequentially cross-linked using glutaraldehyde (Glu) to form IPNs. Span 20, an FDA approved surfactant was employed for the formation of homopolymer, sIPN and IPN nanogels. Formation of stable gelatin-AA droplets were observed at 2% surfactant concentration. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) studies of purified nanogels showed small, spherical IPN nanogels with an average diameter of 255 nm. In contrast, sIPN prepared using the same method gave nanogels of larger size. Fourier-transform infrared (FT-IR) spectroscopy, SEM, DLS, X-ray photoelectron spectroscopy (XPS) and zeta potential studies confirm the interpenetration of the two networks. Leaching of free PAA chains in sIPN upon dialysis against distilled water leads to porous nanogels. The non-uniform surface of IPN nanogels seen in transmission electron microscopy (TEM) images suggests the phase separation of two polymer networks. An increase of N/C ratio from 0.07 to 0.17 (from PAA gel to IPN) and O/C ratio from 0.22 to 0.37 (from gelatin gel to IPN) of the nanogels by XPS measurements showed that both polymer components at the nanogel surface are interpenetrated. These nanogels have tailoring properties in order to use them as high potential drug delivery vehicles for cancer targeting.[Abstract] [Full Text] [Related] [New Search]