These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Receptor identification and physiological characterisation of glucagon-like peptide-2 in the rat heart. Author: Angelone T, Filice E, Quintieri AM, Imbrogno S, Amodio N, Pasqua T, Pellegrino D, Mulè F, Cerra MC. Journal: Nutr Metab Cardiovasc Dis; 2012 Jun; 22(6):486-94. PubMed ID: 21186112. Abstract: BACKGROUND AND AIMS: The anorexigenic glucagon-like peptide (GLP)-2 is produced by intestinal L cells and released in response to food intake. It affects intestinal function involving G-protein-coupled receptors. To verify whether GLP-2 acts as a cardiac modulator in mammals, we analysed, in the rat heart, the expression of GLP-2 receptors and the myocardial and coronary responses to GLP-2. METHODS AND RESULTS: GLP-2 receptors were detected on ventricular extracts by quantitative real-time polymerase chain reaction (Q-RT-PCR) and Western blotting. Cardiac GLP-2 effects were analysed on Langendorff perfused hearts. Intracellular GLP-2 signalling was investigated on Langendorff perfused hearts and by Western blotting and enzyme-linked immunosorbent assay (ELISA) on ventricular extracts. By immunoblotting and Q-RT-PCR, we revealed the expression of ventricular GLP-2 receptors. Perfusion analyses showed that GLP-2 induces positive inotropism at low concentration (10-12 mol l(-1)), and negative inotropism and lusitropism from 10 to 10 mol l(-1). It dose-dependently constricts coronaries. The negative effects of GLP-2 were independent from GLP-1 receptors, being unaffected by exendin-3 (9-39) amide. GLP-2-dependent negative action involves Gi/o proteins, associates with a reduction of intracellular cyclic adenosine monophosphate (cAMP), an increase in extracellular signal regulated kinases 1 and 2 (ERK1/2) and a decrease in phospholamban phosphorylation, but is independent from endothelial nitric oxide synthase (eNOS) and protein kinase G (PKG). Finally, GLP-2 competitively antagonised β-adrenergic stimulation. CONCLUSIONS: For the first time, to our knowledge, we found that: (1) the rat heart expresses functional GLP-2 receptors; (2) GLP-2 acts on both myocardium and coronaries, negatively modulating both basal and β-adrenergic stimulated cardiac performance; and (3) GLP-2 effects are mediated by G-proteins and involve ERK1/2.[Abstract] [Full Text] [Related] [New Search]