These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Adenosine reduces intracellular free calcium concentration in guinea pig ventricular myocytes]. Author: Ma HJ, Dong M, Ji ES, Wang C, Yin JX, Wang QS. Journal: Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2006 Feb; 22(1):58-62. PubMed ID: 21186581. Abstract: AIM: To observe the effects of adenosine on intracellular calcium concentration ([Ca2+]i) level in guinea pig ventricular myocytes and to define the possible mechanisms involved. METHODS: The effects of adenosine on [Ca2+]i were investigated in guinea pig ventricular myocytes. [Ca2+]i was detected by laser confocal microscopy and represented by relative fluorescent intensity ((FI-FI0)/FI0, %, FIo: control, FI: administration of drugs). RESULTS: (1) Adenosine (10, 50, 100 micromol/L) reduced [Ca2+]i of ventricular myocytes in both normal Tyrode's solution and Ca(2+) -free Tyrode's solution in a concentration-dependent manner. (2) Tyrode's solution containing 30 mmol/L KCl (high K+ Tyrode's solution) induced [Ca2+]i elevation in ventricular myocytes, while adenosine (10, 50, 100 micromol/L) markedly inhibited the increase in [Ca2+]i induced by KCl. (3) Pretreatment with DPCPX (1 micromol/L) significantly reduced the effects of adenosine (100 micromol/L) in high K+ Tyrode's solution. The effects of adenosine (100 micromol/L) on [Ca2+]i in high K+ Tyrode's solution were also partially attenuated by pretreatment with L-NAME (1 mmol/L). (4) Adenosine (100 micromol/L) markedly inhibited the low concentration of ryanodine-induced [Ca2+]i increase in Ca(2+) -free Tyrode's solution. (5) When the propagating waves of elevated [Ca2+]i (Ca2+ waves) were produced by increasing extracellular Ca2+ concentration from 1 mmol/L to 10 mmol/L, adenosine (100 micromol/L) could block the propagating waves of elevated [Ca2+]i, reduce the frequency and duration of propagating waves, and reduce [Ca2+]i as well. CONCLUSION: Adenosine may reduce the [Ca2+]i in isolated guinea pig ventricular myocytes via inhibiting Ca2+ influx and alleviating Ca2+ release from sarcoplasmic reticulum(SR). The reduction of Ca2+ influx might be due to the inhibition of voltage-dependent Ca2+ channel via adenosine A1 receptor, and NO might be involved in this process.[Abstract] [Full Text] [Related] [New Search]