These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman), UV and NBO analysis of 2-chlorobenzonitrile by density functional method.
    Author: Krishnan AR, Saleem H, Subashchandrabose S, Sundaraganesan N, Sebastain S.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):582-9. PubMed ID: 21190895.
    Abstract:
    In this work, we will report a combined experimental and theoretical study on molecular structure, vibrational spectra, NBO and UV spectral analysis of 2-chlorobenzonitrile (2-ClBN). The FT-IR solid phase (4000-400 cm(-1)), and FT-Raman spectra (3500-50 cm(-1)) of 2-ClBN was recorded. The molecular geometry, harmonic vibrational frequencies and bonding features of 2-ClBN in the ground state have been calculated by using the density functional methods (BLYP, B3LYP) with 6-31G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ* and π* anti bonding orbitals and E2 energies confirms the occurrence of ICT (Intra molecular Charge Transfer) within the molecule. The UV spectrum was measured in ethanol solution. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complements with the experimental findings. The calculated HOMO and LUMO energies also confirm that charge transfer occurs within the molecule. Finally calculated results were applied to simulated Infrared and Raman spectra of the title compound which show good agreement with observed spectra.
    [Abstract] [Full Text] [Related] [New Search]