These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Processing of thyrotropin-releasing hormone (TRH) prohormone in the rat olfactory bulb generates novel TRH-related peptides. Author: Bulant M, Beauvillain JC, Delfour A, Vaudry H, Nicolas P. Journal: Endocrinology; 1990 Oct; 127(4):1978-85. PubMed ID: 2119297. Abstract: Based on the deduced amino acid sequence of rat TRH prohormone (pro-TRH), proteolytic processing of this polyprotein precursor is expected to produce, beside TRH, several other novel peptides. These peptides should correspond to connecting segments flanking the repeated TRH progenitor sequence and to various C- and/or N-terminally extended forms of TRH. The profile of the endogenous products of the TRH system was studied in rat brain using multiple RIAs coupled to molecular sieve filtration and HPLC separations. In extracts from the rat hypothalamus, TRH and two pro-TRH-connecting peptides, prepro-TRH-(160-169) and prepro-TRH-(178-199) were detected in molar ratios corresponding to those expected for a nearly complete processing of the prohormone molecule. In the olfactory bulb, pro-TRH is processed differently, since peptides containing TRH at their N-termini, [pGlu172] prepro-TRH-(172-199) and [pGlu154]prepro-TRH-(154-169), were found to be major end products along with prepro-TRH-(160-169) and prepro-TRH-(178-199). The dissimilarity in tissue content suggests that differential processing of TRH precursor by various enzymatic pathways may act as a regulating mechanism for TRH and TRH-related activities. The cellular localization of C-terminally extended forms of TRH in rat olfactory bulb was examined by the indirect immunoperoxidase method, using antisera directed against prepro-TRH-(160-169) and pre-pro-TRH-(178-199). Cell bodies and nerve fibers were detected in the glomerular and external plexiform layers of the main olfactory bulb. The presence of extended forms of TRH in interneurons and middle tufted cells of the main olfactory bulb suggests that in light of the recent biological properties described for prepro-TRH-(160-169), these peptides may act as neuromodulators for olfactory epithelium inputs or neurotransmitters within more rostrally located olfactory areas in the forebrain.[Abstract] [Full Text] [Related] [New Search]