These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cloning of a full-length cDNA encoding bovine thymus poly(ADP-ribose) synthetase: evolutionarily conserved segments and their potential functions. Author: Saito I, Hatakeyama K, Kido T, Ohkubo H, Nakanishi S, Ueda K. Journal: Gene; 1990 Jun 15; 90(2):249-54. PubMed ID: 2119324. Abstract: The primary structure of bovine thymus poly(ADP-ribose) synthetase, as deduced from the nucleotide sequence of a cloned cDNA, indicated that this enzyme is composed of 1016 amino acids (aa) with an Mr of 113,481. An abundance of Lys and Arg residues was in accord with the known basic nature of this protein. A comparison with reported sequences of human counterparts revealed: (1) three functional domains separated by partial proteolysis, i.e., DNA-binding (N-terminal), automodification (central), and NAD-binding (C-terminal) domains, have, in this order, increasing degrees of homology; (2) the DNA-binding domain is composed of two distinct regions: one, less conserved, containing zinc-binding fingers and the other, more conserved, containing helix-turn-helix motifs; (3) all Glu and Asp residues in the automodification domain are conserved; and (4) a 78-aa stretch encompassing the nucleotide-binding fold in the NAD-binding domain is completely conserved. These results are compatible with specific features of each domain, i.e., complex DNA-enzyme interactions, multiple automodification at acidic aa residues, and a stringent specificity for the substrate, NAD.[Abstract] [Full Text] [Related] [New Search]