These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alternate day calorie restriction improves systemic inflammation in a mouse model of sepsis induced by cecal ligation and puncture. Author: Hasegawa A, Iwasaka H, Hagiwara S, Asai N, Nishida T, Noguchi T. Journal: J Surg Res; 2012 May 01; 174(1):136-41. PubMed ID: 21195419. Abstract: BACKGROUND: Calorie restriction (CR) exerts cytoprotective effects by up-regulating survival factors, such as mammalian target of rapamycin (mTOR), sirtuin, and peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α). These survival factors have well-established roles in attenuating the inflammatory response. However, it is unclear whether CR affects sepsis-related inflammation. The purpose of this study was to determine whether CR affects sepsis-induced inflammation in a cecal ligation and puncture (CLP)-induced mouse model of sepsis. METHODS: Male C57BL/6N mice underwent alternate day calorie restriction or normal feeding for 8 d before CLP-induced sepsis. After induction of sepsis, liver and lung histopathology and serum levels of cytokines and survival factors were assessed. RESULTS: Serum cytokine and high mobility group box protein 1 (HMGB1) levels were lower in animals that underwent alternate day calorie restriction compared with normally-fed mice after CLP. Alternate day calorie restriction also increased levels of sirtuin, PGC-1α, and mTOR. While 80% of mice in the CLP group died within 48 h after undergoing CLP, 50% of mice died in the ACR + CLP group (P < 0.05). CONCLUSION: Alternate day calorie restriction decreased mortality in a mouse model of sepsis. In addition to attenuated organ injury, a significant reduction in cytokine and HMGB1 levels was observed. These findings suggest that alternative day calorie restriction may reduce excessive inflammation.[Abstract] [Full Text] [Related] [New Search]