These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Error-related medial frontal theta activity predicts cingulate-related structural connectivity.
    Author: Cohen MX.
    Journal: Neuroimage; 2011 Apr 01; 55(3):1373-83. PubMed ID: 21195774.
    Abstract:
    Studies on electrophysiological signatures of error processing have focused on the medial frontal cortex, although widespread neuroanatomical networks support error/action monitoring. Here, electrophysiological responses to errors were combined with structural white matter diffusion tensor imaging (DTI) to investigate the long-range anatomical networks that support error processing. The approach taken here was to link individual differences in error-related EEG responses to individual differences in white matter connectional anatomy. Twenty subjects performed a speeded instructed choice task (a variant of the Simon task) designed to elicit response errors, and also underwent DTI scanning in a separate session. In the EEG data, significantly enhanced theta (4-8 Hz) oscillations were observed over medial frontal electrodes (centered on FCz) during response errors. Mid-frontal scalp sites (likely reflecting medial frontal cortex activity) also functioned as a strong "hub" for information flow, measured through theta-band phase synchronization degree. Next, a dipole source of the error-related theta-band activity was localized for each subject, accounting for approximately 80% of the topographical variance. Correlating individual differences in medial frontal theta dynamics with white matter tracts linking these dipole sources to the rest of the brain revealed that subjects with stronger error-related theta also had stronger white matter connectivity with the ventral striatum and inferior frontal gyrus. Further, subjects in whom medial frontal regions acted as a stronger synchronization "hub" had stronger connectivity between the dipole source location and the corpus callosum and dorsomedial prefrontal white matter pathways. These findings provide novel evidence for the role of widespread fronto-striatal networks in monitoring actions and signaling behavioral errors.
    [Abstract] [Full Text] [Related] [New Search]