These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influenza vaccine immunology.
    Author: Dormitzer PR, Galli G, Castellino F, Golding H, Khurana S, Del Giudice G, Rappuoli R.
    Journal: Immunol Rev; 2011 Jan; 239(1):167-77. PubMed ID: 21198671.
    Abstract:
    Studying the spread of influenza in human populations and protection by influenza vaccines provides important insights into immunity against influenza. The 2009 H1N1 pandemic has taught the most recent lessons. Neutralizing and receptor-blocking antibodies against hemagglutinin are the primary means of protection from the spread of pandemic and seasonal strains. Anti-neuraminidase antibodies seem to play a secondary role. More broadly cross-reactive forms of immunity may lessen disease severity but are insufficient to prevent epidemic spread. Priming by prior exposure to related influenza strains through infection or immunization permits rapid, potent antibody responses to immunization. Priming is of greater importance to the design of immunization strategies than the immunologically fascinating phenomenon of dominant recall responses to previously encountered strains (original antigenic sin). Comparisons between non-adjuvanted inactivated vaccines and live attenuated vaccines demonstrate that both can protect, with some advantage of live attenuated vaccines in children and some advantage of inactivated vaccines in those with multiple prior exposures to influenza antigens. The addition of oil-in-water emulsion adjuvants to inactivated vaccines provides enhanced functional antibody titers, greater breadth of antibody cross-reactivity, and antigen dose sparing. The MF59 adjuvant broadens the distribution of B-cell epitopes recognized on HA and NA following immunization.
    [Abstract] [Full Text] [Related] [New Search]