These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Imatinib increases cytotoxicity of melphalan and their combination allows an efficient killing of chronic myeloid leukemia cells.
    Author: Giallongo C, La Cava P, Tibullo D, Parrinello N, Barbagallo I, Del Fabro V, Stagno F, Conticello C, Romano A, Chiarenza A, Palumbo GA, Di Raimondo F.
    Journal: Eur J Haematol; 2011 Mar; 86(3):216-25. PubMed ID: 21198861.
    Abstract:
    BCR/ABL positive cells are known to be resistant to DNA damage induced by chemotherapy while they are sensitive to imatinib (IM), a tyrosine kinase inhibitor (TKI). To evaluate whether this drug can increase the activity of cytotoxic drugs on BCR/ABL positive cells, we measured the toxicity of cytosine arabinoside (ARA-C), hydroxyurea (HU) and melphalan (MEL), after a pretreatment of 24 h with IM on K562 cell line. The highest cytotoxic effect was seen when the TKI was followed by MEL; our results indicate that inhibition of BCR/ABL activity by IM increased the cytotoxicity of MEL by favoring the DNA damage induced by this drug and by shortening the time for DNA repair at the G2/M checkpoint. A stronger activation of some genes involved in both intrinsic and extrinsic apoptotic pathways was also observed with IM/MEL combination compared to IM or MEL alone. The drugs association was further tested in a type of BaF3 cells (TonB.210) where the BCR-ABL expression is inducible by doxycycline; in this model it was confirmed that a reduction of BCR/ABL activity resulted in an increased susceptibility to the cytotoxic effect of MEL. Furthermore, we studied the effect of IM/MEL treatment on the proliferative potential of myeloid progenitors of six CML patients at diagnosis. The analysis of CFU-GM and BFU-E colonies demonstrated that the IM/MEL combination was more effective than IM alone in reducing the overall number of colonies and the number of copies of BCR/ABL. In conclusion, our work shows that inhibition of BCR/ABL activity increases the toxicity of MEL and allows an efficient killing of leukemic cells, suggesting that a clinical development of this approach could have therapeutic advantages for CML patients.
    [Abstract] [Full Text] [Related] [New Search]