These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cooperative amino acid changes shift the response of the σ⁵⁴-dependent regulator XylR from natural m-xylene towards xenobiotic 2,4-dinitrotoluene.
    Author: de Las Heras A, de Lorenzo V.
    Journal: Mol Microbiol; 2011 Mar; 79(5):1248-59. PubMed ID: 21205010.
    Abstract:
    XylR is a σ⁵⁴-dependent transcriptional factor of Pseudomonas putida that activates the Pu promoter of the TOL plasmid upon binding its natural effector, m-xylene. The search for mutants of the signal-sensing module of XylR that respond to the xenobiotic compound 2,4-dinitrotoluene recurrently yields protein variants with a broad effector range. These mutants had amino acid changes not only in the effector recognition moiety (A module), but also in the inter-domain B linker of the protein. A random mutagenesis and selection/counterselection setup was adopted to optimize the 2,4-DNT reaction of XylRv17, one of the best 2,4-DNT responders and thus recreate how this regulator can adjust its specificity to novel effectors by individual changes on the evolving protein. Site-specific mutagenesis was then used to decipher the contribution of individual mutations in XylRv17 and in one of the mutants evolved from it (XylR28) to the 2,4-DNT response. This approach allowed us to capture a new XylR version with novel mutations that fixed the protein in an intermediate stage of the progress from an effector-promiscuous, pluri-potent protein type to a more specific form where the natural response to m-xylene was decreased and the non-native acquired response to 2,4-DNT was increased.
    [Abstract] [Full Text] [Related] [New Search]