These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of stromal cell-derived factor-1α further impairs diabetic wound healing.
    Author: Bermudez DM, Xu J, Herdrich BJ, Radu A, Mitchell ME, Liechty KW.
    Journal: J Vasc Surg; 2011 Mar; 53(3):774-84. PubMed ID: 21211927.
    Abstract:
    OBJECTIVE: Impaired diabetic wound healing is associated with abnormal stromal cell-derived factor (SDF)-1α production, decreased angiogenesis, and chronic inflammation. Lentiviral-mediated overexpression of SDF-1α can correct the impairments in angiogenesis and healing in diabetic wounds. We hypothesized that SDF-1α is a critical component of the normal wound-healing response and that inhibition of SDF-1α would further delay the wound-healing process. METHODS: dB/Db diabetic mice and Db/+ nondiabetic mice were wounded with an 8-mm punch biopsy and the wounds treated with a lentiviral vector containing either the green fluorescent protein (GFP) or SDF-1α inhibitor transgene. The inhibitor transgene is a mutant form of SDF-1α that binds, but does not activate, the CXCR4 receptor. Computerized planimetry was used to measure wound size daily. Wounds were analyzed at 3 and 7 days by histology and for production of inflammatory markers using real-time polymerase chain reaction. The effect of the SDF-1α inhibitor on cellular migration was also assessed. RESULTS: Inhibition of SDF-1α resulted in a significant decrease in the rate of diabetic wound healing, (3.8 vs 6.5 cm(2)/day in GFP-treated wounds; P = .04), and also impaired the early phase of nondiabetic wound healing. SDF-1α inhibition resulted in fewer small-caliber vessels, less granulation tissue formation, and increased proinflammatory gene expression of interleukin-6 and macrophage inflammatory protein-2 in the diabetic wounds. CONCLUSIONS: The relative level of SDF-1α in the wound plays a key role in the wound-healing response. Alterations in the wound level of SDF-1α, as seen in diabetes or by SDF-1α inhibition, impair healing by decreasing cellular migration and angiogenesis, leading to increased production of inflammatory cytokines and inflammation. Inhibition of SDF-1α further impairs diabetic wound healing.
    [Abstract] [Full Text] [Related] [New Search]