These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibitory effects of kaurenoic acid from Aralia continentalis on LPS-induced inflammatory response in RAW264.7 macrophages. Author: Choi RJ, Shin EM, Jung HA, Choi JS, Kim YS. Journal: Phytomedicine; 2011 Jun 15; 18(8-9):677-82. PubMed ID: 21211951. Abstract: This study investigates the anti-inflammatory effects of a diterpenoid, kaurenoic acid, isolated from the root of Aralia continentalis (Araliaceae). To determine its anti-inflammatory effects, LPS-induced RAW264.7 macrophages were treated with different concentrations of kaurenoic acid and carrageenan-induced paw edema mice model was used in vivo. Kaurenoic acid (ent-kaur-16-en-19-oic acid) dose-dependently inhibited nitric oxide (NO) production, prostaglandin E(2) (PGE(2)) release, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression at micromolar concentrations in LPS-induced RAW264.7 macrophages with IC(50) (the half maximal inhibitory concentration) values of 51.73 (±2.42) μM and 106.09 (±0.27) μM in NO production and PGE(2) release, respectively. Kaurenoic acid also dose-dependently inhibited LPS-induced activation of NF-κB as assayed by electrophorectic mobility shift assay (EMSA) and it almost abolished NF-κB DNA binding affinity at 100μM. Furthermore, the in vivo anti-inflammatory effect of kaurenoic acid was examined in a carrageenan-induced paw edema model. Eight ICR mice in each group were injected with carrageenan and observed hourly, compared with the control group. Kaurenoic acid dose-dependently reduced paw swelling up to 34.4% at 5h after induction, demonstrating inhibition in an acute inflammation model. Taken together, our data suggest that kaurenoic acid, a major diterpenoid from the root of A. continentalis shows anti-inflammatory activity and the inhibition of iNOS and COX-2 expression might be one of the mechanisms responsible for its anti-inflammatory properties.[Abstract] [Full Text] [Related] [New Search]