These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Hepatocyte growth factor attenuates ischemia/reperfusion induced cardiomyocyte apoptosis via downregulating calcium sensing receptor expression].
    Author: Yan L, Zhu TB, Wang LS, Tao ZX, Pan SY, Yang ZJ, Cao KJ.
    Journal: Zhonghua Xin Xue Guan Bing Za Zhi; 2010 Nov; 38(11):1019-24. PubMed ID: 21215232.
    Abstract:
    OBJECTIVE: To examine whether the anti-apoptotic effect of hepatocyte growth factor (HGF) in cardiomyocytes underwent ischemia/reperfusion (I/R) is associated with downregulation of calcium sensing receptor (CaSR) mRNA expression. METHODS: Neonatal rat cardiomyocytes were isolated and randomly divided into 7 groups: control, I/R, GdCl(3), GdCl(3) + NiCl(2) + CdCl(2), GdCl(3) + LY294002, GdCl(3) + HGF, GdCl(3) + HGF + LY294002.I/R was established by incubating primary neonatal rat ventricular cardiomyocytes in ischemia-mimetic solution for 2 h, then reincubated in normal culture medium for 24 h. Cardiomyocyte apoptosis was detected by TUNEL. The expression of CaSR mRNA was detected by reverse transcriptase polymerase chain reaction (RT-PCR). The expression of Caspase-3, Bcl-2 and Phosphoinositide-3 Kinase (PI3K) was analyzed by Western blot. RESULTS: I/R enhanced the expression of CaSR mRNA (I/R: 2.62 ± 0.41, control: 1.00 ± 0.31, P < 0.01) and cardiomyocyte apoptosis [I/R: (15.32 ± 2.54)%, control: (2.90 ± 1.45)%, P < 0.01]. GdCl(3) further increased the expression of CaSR mRNA (GdCl(3): 4.46 ± 0.62, I/R: 2.62 ± 0.41, P < 0.01) and cardiomyocyte apoptosis [GdCl(3): (25.36 ± 2.60)%, I/R: (15.32 ± 2.54)%, P < 0.01], along with upregulation of Caspase-3 (GdCl(3): 1.93 ± 0.28, I/R: 1.50 ± 0.21, P < 0.01), downregulation of Bcl-2 (GdCl(3): 0.82 ± 0.18, I/R: 1.71 ± 0.30, P < 0.01) and PI3K phosphorylation inhibition (I/R: 0.87 ± 0.08, GdCl(3): 0.61 ± 0.07, P < 0.01). Combination of GdCl(3) with LY294002 further enhanced cardiomyocytes apoptosis [GdCl(3) + LY294002: (32.6 ± 3.42)%, GdCl(3): (25.36 ± 2.60)%, P < 0.01] but did not affect CaSR mRNA expression (GdCl(3) + LY294002: 4.27 ± 0.56, GdCl(3): 4.46 ± 0.62, P > 0.05). HGF decreased I/R- and GdCl(3)-induced apoptosis [GdCl(3) + HGF: (11.8 ± 1.89)%, GdCl(3): (25.36 ± 2.60)%, P < 0.05] by suppressing Caspase-3 (GdCl(3) + HGF: 1.12 ± 0.23, (GdCl(3): 1.93 ± 0.28, P < 0.05; GdCl(3) + HGF + LY294002: 1.87 ± 0.31, GdCl(3) + LY294002: 3.86 ± 0.47, P < 0.05) and promoting Bcl-2 (GdCl(3) + HGF: 2.56 ± 0.54, GdCl(3): 0.82 ± 0.18, P < 0.05; GdCl(3) + HGF + LY294002: 1.68 ± 0.28, GdCl(3) + LY294002: 0.68 ± 0.13, P < 0.05) and PI3K phosphorylation expression (GdCl(3) + HGF: 2.87 ± 0.21, GdCl(3): 0.61 ± 0.07, P < 0.05; GdCl(3) + HGF + LY294002: 2.01 ± 0.14, GdCl(3) + LY294002: 0.44 ± 0.10, P < 0.05) in accordance with downregulation of CaSR mRNA expression (GdCl(3) + HGF: 1.46 ± 0.37, GdCl(3): 4.46 ± 0.62, P < 0.01). CONCLUSION: HGF exerts protective role in I/R-induced apoptosis at least in part by inhibiting CaSR mRNA expression along with promoting Bcl-2, suppressing Caspase-3 expression and stimulating PI3K phosphorylation signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]