These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Optimization of Monte Carlo trial moves for protein simulations.
    Author: Betancourt MR.
    Journal: J Chem Phys; 2011 Jan 07; 134(1):014104. PubMed ID: 21218994.
    Abstract:
    Closed rigid-body rotations of residue segments under bond-angle restraints are simple and effective Monte Carlo moves for searching the conformational space of proteins. The efficiency of these moves is examined here as a function of the number of moving residues and the magnitude of their displacement. It is found that the efficiency of folding and equilibrium simulations can be significantly improved by tailoring the distribution of the number of moving residues to the simulation temperature. In general, simulations exploring compact conformations are more efficient when the average number of moving residues is smaller. It is also demonstrated that the moves do not require additional restrictions on the magnitude of the rotation displacements and perform much better than other rotation moves that do not restrict the bond angles a priori. As an example, these results are applied to the replica exchange method. By assigning distributions that generate a smaller number of moving residues to lower temperature replicas, the simulation times are decreased as long as the higher temperature replicas are effective.
    [Abstract] [Full Text] [Related] [New Search]