These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Author: Ma S, Chan YP, Kwan PS, Lee TK, Yan M, Tang KH, Ling MT, Vielkind JR, Guan XY, Chan KW. Journal: Cancer Res; 2011 Jan 15; 71(2):583-92. PubMed ID: 21224345. Abstract: Expression of microRNA genes is profoundly altered in cancer but their role in the development of androgen-independent prostate cancer has received limited attention as yet. In this study, we report a functional impact in prostate cancer cells for overexpression of the microRNA miR-616, which occurred consistently in cells that were androgen-independent (AI) versus androgen-dependent (AD). miR-616 overexpression was confirmed in malignant prostate tissues as opposed to benign prostate specimens. Stable miR-616 overexpression in LNCaP cells by a lentiviral-based approach stimulated AI prostate cancer cell proliferation in vitro whereas concomitantly reducing androgen-induced cell growth. More importantly, miR-616 overexpressing LNCaP cells overcame castration resistance as shown by an enhanced ability to proliferate in vivo after bilateral orchiectomy. Conversely, antagonizing miR-616 in AI prostate cancer cells yielded opposite effects. Microarray profiling and bioinformatics analysis identified the tissue factor pathway inhibitor TFPI-2 mRNA as a candidate downstream target of miR-616. In support of this candidacy, we documented interactions between miR-616 and the 3'UTR of TFPI-2 and determined TFPI-2 expression to be inversely correlated to miR-616 in a series of prostate cell lines and clinical specimens. Notably, reexpression of TFPI-2 in LNCaP cells with stable miR-616 overexpression rescued the AD phenotype, as shown by a restoration of androgen dependence and cell growth inhibition. Taken together, our findings define a functional involvement for miR-616 and TFPI-2 in the development and maintenance of androgen-independent prostate cancer.[Abstract] [Full Text] [Related] [New Search]