These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [70]fullerene-based materials for organic solar cells. Author: Troshin PA, Hoppe H, Peregudov AS, Egginger M, Shokhovets S, Gobsch G, Sariciftci NS, Razumov VF. Journal: ChemSusChem; 2011 Jan 17; 4(1):119-24. PubMed ID: 21226221. Abstract: The synthesis, characterization and photovoltaic study of two novel derivatives of [70]fullerene, phenyl-C₇₁-propionic acid propyl ester ([70]PCPP) and phenyl-C₇₁-propionic acid butyl ester ([70]PCPB), are reported. [70]PCPP and [70]PCPB outperform the conventional material (6,6)-phenyl-C₇₁-butyric acid methyl ester ([70]PCBM) in solar cells based on poly(2-methoxy-5-{3',7'-dimethyloctyloxy}-p-phenylene vinylene) (MDMO-PPV) as a donor polymer using chlorobenzene (CB) or dichlorobenzene (DCB) as solvents. AFM data suggest that improvement of the device efficiency should be attributed to the increased phase compatibility between the novel C₇₀ derivatives and the polymer matrix. [70]PCPP and [70]PCBM showed more or less equally high performances in solar cells comprising poly(3-hexylthiophene) (P3HT) as a donor polymer. Optical modeling revealed that the application of [70]fullerene derivatives as acceptor materials in P3HT-based bulk heterojunction solar cells might give approximately 10 % higher short circuit current densities than using C₆₀-based materials such as [60]PCBM. The high solubility of [70]PCPP and [70]PCPB and their good compatibility with the donor polymers suggest these fullerene derivatives as promising electron acceptor materials for use in efficient bulk heterojunction organic solar cells.[Abstract] [Full Text] [Related] [New Search]