These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dynamics of extraclassical surround modulation in three types of V1 neurons.
    Author: Liu YJ, Hashemi-Nezhad M, Lyon DC.
    Journal: J Neurophysiol; 2011 Mar; 105(3):1306-17. PubMed ID: 21228302.
    Abstract:
    Visual stimuli outside of the classical receptive field (CRF) can influence the response of neurons in primary visual cortex (V1). While recording single units in cat, we presented drifting sinusoidal gratings in circular apertures of different sizes to investigate this extraclassical surround modulation over time. For the full 2-s stimulus time course, three types of neurons were found: 1) 68% of the cells were "suppressive," 2) 25% were "plateau" cells that showed response saturation with no suppression, and 3) the remaining 6% of cells were "facilitative." Analysis of the response dynamics revealed that at response onset, activity of one-half of facilitative cells, 70% of plateau cells, and all suppressive cells is suppressed by the surround. However, over the next 20-30 ms, surround modulation changes to stronger suppression for suppressive cells, substantial facilitation for facilitative cells, and weak facilitation for plateau cells. For all three cell types, these modulatory effects then stabilize between 100 and 200 ms from stimulus onset. Thus our findings illustrate two stages of surround modulation. Early modulation is mainly suppressive regardless of cell type and, because of rapid onset, may rely on feedforward mechanisms. Surround modulation that evolves later in time is not always suppressive, depending on cell type, and may be generated through different combinations of cortical circuits. Additional analysis of modulation throughout the cortical column suggests the possibility that the larger excitatory fields of facilitative cells, primarily found in infragranular layers, may contribute to the second stage of suppression through intracolumnar circuitry.
    [Abstract] [Full Text] [Related] [New Search]