These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Early life experiences affect adult delayed-type hypersensitivity in short and long photoperiods.
    Author: Fonken LK, Morris JS, Nelson RJ.
    Journal: Chronobiol Int; 2011 Mar; 28(2):101-8. PubMed ID: 21231871.
    Abstract:
    Environmental experiences during development provide animals with important information about future conditions. Siberian hamsters are photoperiodic rodents that dramatically adjust their physiology and behavior to adapt to seasonal changes. For example, during short winter-like days, hamsters enhance some components of immune function putatively to cope with increasing environmental challenges. Furthermore, early life stress alters the developmental course of the immune system. Overall, immune function is typically suppressed in response to chronic stress, but responses vary depending on the type of stress and components of immune function assessed. This led us to hypothesize that delayed-type hypersensitivity (DTH), an antigen-specific, cell-mediated immune response, would be differentially modulated in hamsters that underwent early life maternal separation (MS) in either short or long photoperiods. At birth, hamsters were assigned to either short (SD; 8 h light/day) or long (LD; 16 h light/day) photoperiods and either daily 3 h MS, daily 15-min brief maternal separation (BMS), or no manipulation from postnatal day 2 through 14. In adulthood DTH was assessed. Hamsters reared in short days enhanced DTH responses. MS and BMS attenuated DTH responses in both short and long days. However, BMS long-day female hamsters did not suppress pinna swelling, suggesting a protective effect of female sex steroids on immune function. As is typical in short days, reproductive tissue was regressed. Reproductive tissue mass was also decreased in long-day MS female hamsters. Furthermore, MS altered photoperiod-induced changes in body mass. Taken together, these findings suggest that manipulations of early life mother-pup interactions in Siberian hamsters result in physiological changes and suppressed cell-mediated immunity.
    [Abstract] [Full Text] [Related] [New Search]