These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Author: Hackenberg S, Scherzed A, Technau A, Kessler M, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N. Journal: Toxicol In Vitro; 2011 Apr; 25(3):657-63. PubMed ID: 21232592. Abstract: Despite increasing application of zinc oxide nanoparticles (ZnO-NPs) for industrial purposes, data about potential toxic properties is contradictory. The current study focused on the cyto- and genotoxicity of ZnO-NPs in comparison to ZnO powder in primary human nasal mucosa cells cultured in the air-liquid interface. Additionally, IL-8 secretion as a marker for pro-inflammatory effects was measured. Particle morphology and intracellular distribution were evaluated by transmission electron microscopy (TEM). ZnO-NPs were transferred into the cytoplasm in 10% of the cells, whereas an intranuclear distribution could only be observed in 1.5%. While no cyto- or genotoxicity could be seen for ZnO powder in the dimethylthiazolyl-diphenyl-tetrazolium-bromide (MTT) test, the trypan blue exclusion test, and the single-cell microgel electrophoresis (comet) assay, cytotoxic effects were shown at a ZnO-NP concentration of 50 μg/ml (P<0.01). A significant enhancement in DNA damage was observed starting from ZnO-NP concentrations of 10 μg/ml (P<0.05) in comparison to the control. IL-8 secretion into the basolateral culture medium was increased at ZnO-NP concentrations of 5 μg/ml (P<0.05), as shown by ELISA. Our data indicates cyto- and genotoxic properties as well as a pro-inflammatory potential of ZnO-NPs in nasal mucosa cells. Thus, caution should be taken concerning their industrial and dermatological application. Additionally, further investigation on repetitive NP exposure is needed to estimate the impact of repair mechanisms.[Abstract] [Full Text] [Related] [New Search]