These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Force gradient sensitive detection in lift-mode Kelvin probe force microscopy.
    Author: Ziegler D, Stemmer A.
    Journal: Nanotechnology; 2011 Feb 18; 22(7):075501. PubMed ID: 21233549.
    Abstract:
    We demonstrate frequency modulation Kelvin probe force microscopy operated in lift-mode under ambient conditions. Frequency modulation detection is sensitive to force gradients rather than forces as in the commonly used amplitude modulation technique. As a result there is less influence from electric fields originating from the tip's cone and cantilever, and the recorded surface potential does not suffer from the large lateral averaging observed in amplitude modulated Kelvin probe force microscopy. The frequency modulation technique further shows a reduced dependence on the lift-height and the frequency shift can be used to map the second order derivative of the tip-sample capacitance which gives high resolution material contrast of dielectric sample properties. The sequential nature of the lift-mode technique overcomes various problems of single-scan techniques, where crosstalk between the Kelvin probe and topography feedbacks often impair the correct interpretation of the recorded data in terms of quantitative electric surface potentials.
    [Abstract] [Full Text] [Related] [New Search]