These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Damage-specific DNA binding protein 1 (DDB1) is involved in ubiquitin-mediated proteolysis of p27Kip1 in response to UV irradiation. Author: Iovine B, Iannella ML, Bevilacqua MA. Journal: Biochimie; 2011 May; 93(5):867-75. PubMed ID: 21237244. Abstract: Damage-specific DNA binding protein 1 (DDB1) is a conserved protein component of the damaged DNA binding protein complex (DDB) that recognizes UV-induced DNA lesions and initiates the nucleotide excision repair process. DDB1 is also part of an E3 ubiquitin-ligase complex that targets a variety of substrates for proteolysis including the cyclin-dependent kinase inhibitor p27(Kip1). The mechanism regulating the trafficking of DDB1 and its relationship with UV irradiation is not known, although cell cycle progression is implicated in the molecular machinery driving DDB1 into the nucleus. We evaluated the involvement of DDB1 in ubiquitination of the cdk inhibitor p27(Kip1) in response to UV irradiation. First, we observed that low and high doses of UV irradiation exert different effects on p27(Kip1) protein levels. Indeed, low but not high UV doses induced p27(Kip1) protein proteolysis in several human cell lines and UV-dependent degradation is dominant over other genotoxic agents such as cisplatin. We also demonstrate that p27(Kip1) reduction is not due to transcriptional regulation and that the proteasome inhibitor MG132 affects p27(Kip1) degradation. We observed that at low UV doses the decrease in p27(Kip1) nuclear protein related with DDB1 translocation into the nucleus; conversely, high doses of UV-induced p27(Kip1) accumulation and unchanged level of DDB1. The knockdown of DDB1 or Skp2 prevents UV-induced degradation of p27(Kip1) suggesting that DDB1 is essential to regulation of p27(kip1) turnover after a mild DNA damage. Our findings support the concept that DDB1 contributes to the activation of DNA repair mechanisms and could be a key factor in regulating the cell cycle in response to UV-induced DNA damage. Although the temporal order with which DDB1 contributes to ubiquitination of p27(Kip1) or initiates the nucleotide excision repair process remains to be established, our results represent a major step towards clarifying these issues.[Abstract] [Full Text] [Related] [New Search]