These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protection by tetrahydroxystilbene glucoside against neurotoxicity induced by MPP+: the involvement of PI3K/Akt pathway activation.
    Author: Qin R, Li X, Li G, Tao L, Li Y, Sun J, Kang X, Chen J.
    Journal: Toxicol Lett; 2011 Apr 10; 202(1):1-7. PubMed ID: 21237255.
    Abstract:
    Oxidative stress plays an important role in the pathogenesis of Parkinson's disease (PD). 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), which is an active component of the rhizome extract from polygonum multiflorum, shows potent antioxidant properties. In this paper, the neuroprotective effects of TSG on 1-methyl-4-phenylpyridinium (MPP+-induced apoptosis in PC12 cells were investigated. Pretreatment with TSG markedly attenuated MPP+-induced loss of cell viability and release of lactate dehydrogenase (LDH), and reduced MPP+-induced apoptotic cell death in a dose-dependent manner. The anti-apoptotic effects of TSG were probably mediated by the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway since TSG failed to rescue cells from MPP+ injury in the presence of the PI3K inhibitor, LY294002. These results indicate that TSG affords a significant neuroprotective effect against MPP+-induced damage and apoptosis in PC12 cells. The PI3K/Akt signaling pathway might be involved in the TSG-mediated anti-apoptotic effects.
    [Abstract] [Full Text] [Related] [New Search]