These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of enzyme-linked immunosorbent assay for Δ12-prostaglandin J2 and its application to the measurement of the endogenous product generated by cultured adipocytes during the maturation phase.
    Author: Hossain MS, Chowdhury AA, Rahman MS, Nishimura K, Jisaka M, Nagaya T, Shono F, Yokota K.
    Journal: Prostaglandins Other Lipid Mediat; 2011 Apr; 94(3-4):73-80. PubMed ID: 21237281.
    Abstract:
    Peroxisome proliferator-activated receptor (PPAR)γ is a well-known master regulator for the differentiation and maturation of adipocytes. Prostaglandin (PG) D(2) can be produced in adipocytes and dehydrated to J(2) series of PGs including 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) and Δ(12)-PGJ(2), which serve as pro-adipogenic prostanoids through the activation of PPARγ. However, the quantitative determination of Δ(12)-PGJ(2) has not been attempted during the life stage of adipocytes. In this study, we developed an enzyme-linked immunosorbent assay using mouse antiserum specific for Δ(12)-PGJ(2). According to the standard curve, the amount of Δ(12)-PGJ(2) can be measured from 0.5 pg to 14.4 ng in an assay. Our antiserum did not recognize most other prostanoids including 15d-PGJ(2), while it only showed the cross-reaction of 28% with unstable PGJ(2). This immunological assay was applied to the determination of the endogenous formation of Δ(12)-PGJ(2) in cultured 3T3-L1 adipocytes during the maturation phase. The ability of cultured adipocytes to form endogenous Δ(12)-PGJ(2) increased gradually at an earlier stage of the maturation phase and detectable at higher levels than 15d-PGJ(2). Treatment of cultured cells with either aspirin or indomethacin, a general cyclooxygenase inhibitor, significantly reduced the production of endogenous Δ(12)-PGJ(2) in the maturation medium as expected. Furthermore, we evaluated individually the exogenous effects of PGJ(2) series at various doses on adipogenesis during the maturation phase. Although Δ(12)-PGJ(2) was slightly less potent than 15d-PGJ(2), each of these PGJ(2) series rescued effectively both the accumulation of fats and the gene expression of typical adipocyte-markers that were attenuated in the presence of aspirin. Taken together, our findings indicate that endogenous Δ(12)-PGJ(2) contributes substantially to the up-regulation of adipogenesis program through the activation of PPARγ together with 15d-PGJ(2) during the maturation phase of cultured adipocytes.
    [Abstract] [Full Text] [Related] [New Search]