These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transfer of lipid and phase reorganisation in self-assembled liquid crystal nanostructured particles based on phytantriol.
    Author: Tilley A, Dong YD, Amenitsch H, Rappolt M, Boyd BJ.
    Journal: Phys Chem Chem Phys; 2011 Feb 28; 13(8):3026-32. PubMed ID: 21240427.
    Abstract:
    The internal structure of dispersed liquid crystal nanostructured particles of the V(2) and H(2) phases, termed cubosomes and hexosomes respectively, is integral to their application in the pharmaceutical, agricultural and food industries. However the nanostructure is susceptible to change upon incorporation of other lipids and hence it is important to understand the potential for interparticle lipid transfer for such particles when they encounter a particle of dissimilar lipid content. Using time resolved synchrotron small angle X-ray scattering, we have investigated the transfer of material between cubosomes composed of phytantriol with three different particle types of dissimilar composition, (i) hexosomes and (ii) emulsified microemulsion composed of phytantriol and vitamin E acetate, and (iii) cubosomes prepared from glycerol monooleate. It was found that material was transferred between the different dispersed nanostructured particles, with the transfer being caused by compositional ripening. Somewhat counter-intuitively the transfer was bidirectional with phytantriol being more rapidly transferred than the minor component vitamin E acetate. The greater lipophilicity of vitamin E acetate supports previous studies suggesting greater mobility for the less lipophilic components, regardless of the more efficient transfer route to achieve uniform composition. When particles comprising lipids with similar lipophilicities were mixed, the transfer was limited and did not achieve completion; a phase change between cubic nanostructures required to achieve complete mixing provides an apparent barrier to further compositional ripening. The conclusions from this study provide additional support to lipid transfer mechanisms, and highlight some subtleties in using dissimilar lipid mixtures in e.g. food applications.
    [Abstract] [Full Text] [Related] [New Search]