These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: S(+)-ketamine suppresses desensitization of γ-aminobutyric acid type B receptor-mediated signaling by inhibition of the interaction of γ-aminobutyric acid type B receptors with G protein-coupled receptor kinase 4 or 5.
    Author: Ando Y, Hojo M, Kanaide M, Takada M, Sudo Y, Shiraishi S, Sumikawa K, Uezono Y.
    Journal: Anesthesiology; 2011 Feb; 114(2):401-11. PubMed ID: 21245733.
    Abstract:
    BACKGROUND: Intrathecal baclofen therapy is an established treatment for severe spasticity. However, long-term management occasionally results in the development of tolerance. One of the mechanisms of tolerance is desensitization of γ-aminobutyric acid type B receptor (GABABR) because of the complex formation of the GABAB2 subunit (GB2R) and G protein-coupled receptor kinase (GRK) 4 or 5. The current study focused on S(+)-ketamine, which reduces the development of morphine tolerance. This study was designed to investigate whether S(+)-ketamine affects the GABABR desensitization processes by baclofen. METHODS: The G protein-activated inwardly rectifying K channel currents induced by baclofen were recorded using Xenopus oocytes coexpressing G protein-activated inwardly rectifying K channel 1/2, GABAB1a receptor subunit, GB2R, and GRK. Translocation of GRKs 4 and 5 and protein complex formation of GB2R with GRKs were analyzed by confocal microscopy and fluorescence resonance energy transfer analysis in baby hamster kidney cells coexpressing GABAB1a receptor subunit, fluorescent protein-tagged GB2R, and GRKs. The formation of protein complexes of GB2R with GRKs was also determined by coimmunoprecipitation and Western blot analysis. RESULTS: Desensitization of GABABR-mediated signaling was suppressed by S(+)-ketamine in a concentration-dependent manner in the electrophysiologic assay. Confocal microscopy revealed that S(+)-ketamine inhibited translocation of GRKs 4 and 5 to the plasma membranes and protein complex formation of GB2R with the GRKs. Western blot analysis also showed that S(+)-ketamine inhibited the protein complex formation of GB2R with the GRKs. CONCLUSION: S(+)-Ketamine suppressed the desensitization of GABABR-mediated signaling at least in part through inhibition of formation of protein complexes of GB2R with GRK 4 or 5.
    [Abstract] [Full Text] [Related] [New Search]